Package: BallMapper (via r-universe)

August 22, 2024

Type Package

Title The Ball Mapper Algorithm

Version 0.2.0

Description The core algorithm is described in ``Ball mapper: a shape summary for topological data analysis" by Pawel Dlotko, (2019) <arXiv:1901.07410>. Please consult the following youtube video https://www.youtube.com/watch?v=M9Dm1nl_zSQfor> the idea of functionality. Ball Mapper provide a topologically accurate summary of a data in a form of an abstract graph. To create it, please provide the coordinates of points (in the points array), values of a function of interest at those points (can be initialized randomly if you do not have it) and the value epsilon which is the radius of the ball in the Ball Mapper construction. It can be understood as the minimal resolution on which we use to create the model of the data.

Maintainer Pawel Dlotko <pdlotko@gmail.com>

License MIT + file LICENCE

Encoding UTF-8

LazyData true

Imports igraph, scales, networkD3, testthat, fields, methods, stringr

RoxygenNote 6.1.1

NeedsCompilation no

Author Pawel Dlotko [aut, cre]

Date/Publication 2019-08-20 21:20:17 UTC

Repository https://pdlotko.r-universe.dev

RemoteUrl https://github.com/cran/BallMapper

RemoteRef HEAD

RemoteSha a6e7221046a384c74b278d3654aac6a93d232c6c

2 BallMapper

Contents

	BallMapper																	2
	colorByAllVariables	s																3
	colorByAverageValu																	
	colorByStDevValue																	
	coloredDynamicNet																	5
	ColorIgraphPlot																	6
	color_by_distance_t																	
	coordinates_of_poir		-															
	find_dominant_diffe																	
	find_dominant_diffe																	
	GrayscaleIgraphPlot																	
	normalize_to_average																	
	normalize_to_min_(-																
	points_covered_by_																	
	pointToBallList																	
	readBallMapperGra																	
	simpleDynamicNety	•																
	storeBallMapperGra																	
	storeBumviupperGre			• •						•	• •	•	•		•	•	• •	13
Index																		17
BallMapper		C	·	1	/ <u>:</u> 4	1	1 1:4:		1		4 :	\	- £	1	D1	17 A	1	
		Create vertices and edges (with additional properties) of a Ball Mapper graph representation of the input data. Please be aware that the																
		per grapn r program wi	•			-												
		ter analysis			-													
		data prior t				-		nsu	iei	vvrt	: III	si l	o n	UII	riui	ııze	ın	c
		uuiu prior i	o running	ine j	unci	wn.												

Description

Create vertices and edges (with additional properties) of a Ball Mapper graph representation of the input data. Please be aware that the program will not perform any normalization on the data. As with cluster analysis we recommend that you consider whether to normalize the data prior to running the function.

Usage

BallMapper(points, values, epsilon)

Arguments

points

a collection of input points in a form of a data frame. These are typically points in Euclidean space. By default the Euclidean distance is used to construct the Ball Mapper.

colorByAllVariables 3

values a collection of outcome values which apply to the data points. Mean values of

this variable within any given ball will be used to color the Ball Mapper graph. If it is not available, please set it to a constant array with the same length as the

number of observations in the dataset.

epsilon the value of radius of balls used in the Ball Mapper construction.

Value

The function returns a long list of outputs which are explained below: vertices, comprises two binded lists: First one which contains an increasing sequence of numbers starting from 1 to the number of vertices. Each of them corresponds to a landmark point. The second one contains the number of points covered by a ball of radius epsilon centered by the following landmark points. edges, a collection of not directed edges composed of the first and the second vertex. Ordering of vertices do not have meaning. edges_strength, For every edge [a,b] we define its strength as the number of points that are covered by both landmarks a and b. This array contains the strength of every edge in the Ball Mapper graph. points_covered_by_landmarks, is a list of vectors. I-th vector contains the positions of points covered by i-th landmark. landmarks, contains a list of positions of the landmark points used to construct the balls. coloring, is a vector having as many positions as the number of lanrmarks. It contains the averaged outcome values of the coloring variable corresponding to the points covered by each landmark.

Examples

```
var <- seq(from=0,to=6.3,by=0.1)
points <- as.data.frame( cbind( sin(var),cos(var) ) )
values <- as.data.frame( sin(var) )
epsilon <- 0.25
1 <- BallMapper(points,values,epsilon)</pre>
```

colorByAllVariables

Produce a collection of png files with mapper graphs colored by following coordinates (so that the number of files is the same as the number of coordinates).

Description

Produce a collection of png files with mapper graphs colored by following coordinates (so that the number of files is the same as the number of coordinates).

```
colorByAllVariables(outputFromBallMapper, points,
  fileNamePrefix = "output_", defaultXResolution = 512,
  defaultYResolution = 512)
```

outputFromBallMapper

an output from the BallMapper function

points a collection of input points in a form of a data frame used to create Ball Mapper

graph.

fileNamePrefix a prefix of a file name. A plot that uses i-th variable as a coloring will contain

this string as a prefix followed by the number i. Set to "output_" by default.

defaultXResolution

store a default resolution of image in x direction. Set to 512 by default.

defaultYResolution

store a default resolution of image in y direction. Set to 512 by default.

Value

none.

colorByAverageValueOfOtherVariable

Produce a new coloring vector being an average of values of given function at points covered by each vertex of Ball Mapper graph.

Description

Produce a new coloring vector being an average of values of given function at points covered by each vertex of Ball Mapper graph.

Usage

```
colorByAverageValueOfOtherVariable(outputFromBallMapper,
    newFunctionOnPoints)
```

Arguments

outputFromBallMapper

an output from the BallMapper function

newFunctionOnPoints

values of function on points.

Value

Vector of function values on vertices on Ball Mapper graph. var <- seq(from=0,to=6.3,by=0.1) points <- as.data.frame(cbind($\sin(\text{var}),\cos(\text{var})$)) values <- as.data.frame($\sin(\text{var})$) l <- BallMapper(points, values, 0.25) ColorIgraphPlot(l) new_coloring <- colorByAverageValueOfOtherVariable(l,cos(var)) l\$coloring <- new_coloring ColorIgraphPlot(l)

colorByStDevValueOfOtherVariable

Produce a new coloring vector being a standard deviation of values of given function at points covered by each vertex of Ball Mapper graph.

Description

Produce a new coloring vector being a standard deviation of values of given function at points covered by each vertex of Ball Mapper graph.

Usage

colorByStDevValueOfOtherVariable(outputFromBallMapper, newFunctionOnPoints)

Arguments

outputFromBallMapper an output from the BallMapper function newFunctionOnPoints values of function on points.

Value

Vector of function values on vertices on Ball Mapper graph. var <- seq(from=0,to=6.3,by=0.1) points <- as.data.frame(cbind($\sin(\text{var}),\cos(\text{var})$)) values <- as.data.frame($\sin(\text{var})$) l <- BallMapper(points, values, 0.25) ColorIgraphPlot(l) new_coloring <- colorByStDevValueOfOtherVariable(l,sin(var)) l\$coloring <- new_coloring ColorIgraphPlot(l)

coloredDynamicNetwork This procedure produces a dynamic graph with colors. It allows zoomin operation and displays information about vertices when they are clicked upon.

Description

This procedure produces a dynamic graph with colors. It allows zoom-in operation and displays information about vertices when they are clicked upon.

Usage

coloredDynamicNetwork(outputOfBallMapper, showLegend = FALSE)

6 ColorIgraphPlot

Arguments

outputOfBallMapper

an output from the BallMapper function

showLegend i

if set to TRUE a legend will be displayed indicating the coloring of the values of vertices.

Value

None

Examples

```
var <- seq(from=0,to=6.3,by=0.1)
points <- as.data.frame( cbind( sin(var),cos(var) ) )
values <- as.data.frame( sin(var) )
epsilon <- 0.25
1 <- BallMapper(points,values,epsilon)
coloredDynamicNetwork(1)</pre>
```

ColorIgraphPlot

Produce a static color visualization of the Ball Mapper graph. It is based on the output from BallMapper function.

Description

Produce a static color visualization of the Ball Mapper graph. It is based on the output from BallMapper function.

Usage

```
ColorIgraphPlot(outputFromBallMapper, showVertexLabels = TRUE,
    showLegend = FALSE, minimal_ball_radius = 7,
    maximal_ball_scale = 20, maximal_color_scale = 10,
    seed_for_plotting = -1, store_in_file = "",
    default_x_image_resolution = 512, default_y_image_resolution = 512,
    number_of_colors = 100)
```

Arguments

outputFromBallMapper

an output from the BallMapper function

showVertexLabels

a boolean value determining if the vertex labels are to be shown (TRUE by default).

showLegend a boolean value determining if the legend is to be shown (FALSE by default). minimal_ball_radius

provide a minimal value of the radius of balls used in visualization (7 by default).

```
maximal_ball_scale
```

provide a maximal value of the radius of balls used in visualization (20 by default).

maximal_color_scale

Provide a maximal value (starting from 0) of the color of a ball (10 by default).

seed_for_plotting

if set to the same number will suspend the fandom argument in the ploting rountine and produce plots with the same layout everytime.

store_in_file if set to a string, will open a png file, and store the plot therein. By default it is set to an empty string.

default_x_image_resolution

store a default resolution of image in x direction. Set to 512 by default.

default_y_image_resolution

store a default resolution of image in y direction. Set to 512 by default.

number_of_colors

store a number of colors used in the plot.

Value

None.

Examples

```
var <- seq(from=0,to=6.3,by=0.1)
points <- as.data.frame( cbind( sin(var),cos(var) ) )
values <- as.data.frame( sin(var) )
epsilon <- 0.25
1 <- BallMapper(points,values,epsilon)
ColorIgraphPlot(1)</pre>
```

color_by_distance_to_reference_points

This function will provide a new coloring which is the minimal and average distance of points in the point cloud to the referece points. The output from this procedure can be used as an alternative coloring in BallMapper.

Description

This function will provide a new coloring which is the minimal and average distance of points in the point cloud to the referece points. The output from this procedure can be used as an alternative coloring in BallMapper.

```
color_by_distance_to_reference_points(allPoints, refPoints)
```

allPoints is a collection of all points in the dataset.

refPoints is a subset of all points. The function will compute the distance of each point

from allPoints to referencePoints

Value

a pair of minimal and average distances. They can be used to color the BallMapper graph. var <-seq(from=0,to=6.3,by=0.1) points <- as.data.frame(cbind(sin(var),cos(var))) values <- as.data.frame(sin(var)) 1 <- BallMapper(points, values, 0.25) pts <- as.data.frame(points_covered_by_landmarks(l,1)) new_coloring_function <- color_by_distance_to_reference_points(points, pts) l\$coloring <- new_coloring_function[,1] ColorIgraphPlot(l) l\$coloring <- new_coloring_function[,2] ColorIgraphPlot(l)

coordinates_of_points_in_subcollection

This is an auxiliery function. It take the coordinates of points, ids of subset of points, and number of coordinate, and return a sorted vector of the given coordinate in the considered points. For instance, given the collection of points: 1 2 3 4 5 6 7 8 9 and which_subset = 2,3 and number_of_coordinate = 2 the procedure below will return the vector [2,5,8].

Description

This is an auxiliery function. It take the coordinates of points, ids of subset of points, and number of coordinate, and return a sorted vector of the given coordinate in the considered points. For instance, given the collection of points: 1 2 3 4 5 6 7 8 9 and which_subset = 2,3 and number_of_coordinate = 2 the procedure below will return the vector [2,5,8].

Usage

```
coordinates_of_points_in_subcollection(points, which_subset,
  number_of_coordinate)
```

Arguments

points is a collection of input points in a form of a data frame. The same one as on the

input of the Ball Mapper.

which_subset Indices of points in the given subset.

number_of_coordinate

which coordinate of the consired points to export.

Value

the sorted vector of values of a given variable at the collection of points. var <- seq(from=0,to=6.3,by=0.1) points <- as.data.frame(cbind($\sin(\text{var}),\cos(\text{var})$)) values <- as.data.frame($\sin(\text{var})$) 1 <- BallMapper(points, values, 0.25) coordinates_of_points_in_subcollection(points,c(6,7,8),1)

find_dominant_difference_using_averages

This procedure take two subset of points (that come from the vertices of Ball Mapper) and return the coordinates on which the averages of those two collections differs most. To ballance the effect of potentially different orders of magnitude of data in column, we divide the difference in means by the mean of the whole column.

Description

This procedure take two subset of points (that come from the vertices of Ball Mapper) and return the coordinates on which the averages of those two collections differs most. To ballance the effect of potentially different orders of magnitude of data in column, we divide the difference in means by the mean of the whole column.

Usage

find_dominant_difference_using_averages(points, subset1, subset2)

Arguments

points a collection of input points in a form of a data frame. The same one as on the

input of the Ball Mapper.

subset1 First subset of ids of points.
subset2 Second subset of ids of points.

Value

Vector of corrdinate ids with the absolute value of difference between averages, ordered according to the second variable. var <- seq(from=0,to=6.3,by=0.1) points <- as.data.frame(cbind(sin(var),cos(var)) values <- as.data.frame(sin(var)) 1 <- BallMapper(points, values, 0.25) g1 <- c(1,21 g2 <- c(11,12) find_dominant_difference_using_averages(points,g1,g2)

find_dominant_difference_using_averages_normalized_by_sd

This procedure take two subset of points (that come from the vertices of Ball Mapper) and return the coordinates on which the averages of those two collections differs most. To ballance the effect of potentially different orders of magnitude of data in column, we divide the difference in means by the standard deviation of the whole column.

Description

This procedure take two subset of points (that come from the vertices of Ball Mapper) and return the coordinates on which the averages of those two collections differs most. To ballance the effect of potentially different orders of magnitude of data in column, we divide the difference in means by the standard deviation of the whole column.

Usage

```
find_dominant_difference_using_averages_normalized_by_sd(points, subset1,
    subset2)
```

Arguments

points a collection of input points in a form of a data frame. The same one as on the input of the Ball Mapper.

subset1 First subset of ids of points.
subset2 Second subset of ids of points.

Value

Vector of corrdinate ids with the absolute value of difference between averages normalized by the standard deviation of the considered column, ordered according to the second variable. var <- seq(from=0,to=6.3,by=0.1) points <- as.data.frame(cbind(sin(var),cos(var))) values <- as.data.frame(sin(var)) 1<- BallMapper(points, values, 0.25) g1 <- c(1,21 g2 <- c(11,12) find_dominant_difference_using_averages(points,g1,g2)

GrayscaleIgraphPlot Produce a static grayscale visualization of the Ball Mapper graph. It is based on the output from the BallMapper function.

Description

Produce a static grayscale visualization of the Ball Mapper graph. It is based on the output from the BallMapper function.

```
GrayscaleIgraphPlot(outputFromBallMapper, showVertexLabels = TRUE,
   minimal_ball_radius = 7, maximal_ball_scale = 20,
   seed_for_plotting = -1, store_in_file = "",
   default_x_image_resolution = 512, default_y_image_resolution = 512)
```

stora a dafau

store a default resolution of image in x direction. Set to 512 by default.

default_y_image_resolution

store a default resolution of image in y direction. Set to 512 by default.

Value

None.

Examples

```
var <- seq(from=0,to=6.3,by=0.1)
points <- as.data.frame( cbind( sin(var),cos(var) ) )
values <- as.data.frame( sin(var) )
epsilon <- 0.25
1 <- BallMapper(points,values,epsilon)
GrayscaleIgraphPlot(1)</pre>
```

```
normalize_to_average_0_stdev_1
```

This function normalize each column (variable) of the input dataset so that the the average of the normalized column is 0 and its standard deviation is 1.

Description

This function normalize each column (variable) of the input dataset so that the average of the normalized column is 0 and its standard deviation is 1.

```
normalize_to_average_0_stdev_1(points)
```

points

a collection of input points in a form of a data frame.

Value

Nowmalized collectpion of points.

Examples

```
var <- seq(from=0,to=6.3,by=0.1)
points <- as.data.frame( cbind( sin(var),cos(var) ) )
normalized_points <- normalize_to_average_0_stdev_1 (points)</pre>
```

```
normalize_to_min_0_max_1
```

This function normalize each column (variable) of the input dataset so that the maximum is mapped to one, minimum to zero, and the intermediate values linearly to the appropriate points in the interval (0,1).

Description

This function normalize each column (variable) of the input dataset so that the maximum is mapped to one, minimum to zero, and the intermediate values linearly to the appropriate points in the interval (0,1).

Usage

```
normalize_to_min_0_max_1(points)
```

Arguments

points

a collection of input points in a form of a data frame.

Value

Normalized collection of points.

Examples

```
var <- seq(from=0,to=6.3,by=0.1)
points <- as.data.frame( cbind( sin(var),cos(var) ) )
normalized_points <- normalize_to_min_0_max_1 (points)</pre>
```

points_covered_by_landmarks

This function returns a list of points covered by the given collection of landmarks.

Description

This function returns a list of points covered by the given collection of landmarks.

Usage

```
points_covered_by_landmarks(outputFromBallMapper, numbers_of_landmarks)
```

Arguments

```
outputFromBallMapper an output from the BallMapper function numbers_of_landmarks a vector containing the numbers of landmarks under consideration.
```

Value

A vector of points covered by the landmarks given in numbers_of_landmarks.

pointToBallList

Produce a two column list. The first column contain the number of point (possibly with repetitions), the second one contains the number of landmark points that cover it. For example, let us assume that point 1 is covered by landmark 1 and 2, and point 2 is covered by the landmark 2. In this case the obtained list is of a form: 1 1 1 2 2 2 This list can be used for a further analysis of various parts of Ball Mapper graph.

Description

Produce a two column list. The first column contain the number of point (possibly with repetitions), the second one contains the number of landmark points that cover it. For example, let us assume that point 1 is covered by landmark 1 and 2, and point 2 is covered by the landmark 2. In this case the obtained list is of a form: 1 1 1 2 2 2 This list can be used for a further analysis of various parts of Ball Mapper graph.

```
pointToBallList(coverageFromBallMapper)
```

```
coverageFromBallMapper
```

a coverage parameter of an output from BallMapper function

Value

List of landmarks covering each point, as described above.

Examples

```
var <- seq(from=0,to=6.3,by=0.1)
points <- as.data.frame( cbind( sin(var),cos(var) ) )
values <- as.data.frame( sin(var) )
epsilon <- 0.25
1 <- BallMapper(points,values,epsilon)
list <- pointToBallList(l$coverage)</pre>
```

readBallMapperGraphFromFile

This procedure read the BallMapper object from file. The parameter of the file is filename. We assume that files: filename_vertices filename_edges filename_edges_strength filename_points_covered_by_landmarks filename_landmarks filename_coloring

Description

This procedure read the BallMapper object from file. The parameter of the file is filename. We assume that files: filename_vertices filename_edges filename_edges_strength filename_points_covered_by_landmarks filename_landmarks filename_coloring

Usage

```
readBallMapperGraphFromFile(filename)
```

Arguments

filename

prefix of the name of the file containing elements of Ball Mapper graph.

Value

```
BallMapper object var <- seq(from=0,to=6.3,by=0.1) points <- as.data.frame( cbind( sin(var),cos(var) ) ) values <- as.data.frame(sin(var)) l <- BallMapper(points, values, 0.25) storeBallMapperGraphIn-File(l,"my_favorite_BM_graph") l_prime <- readBallMapperGraphFromFile("my_favorite_BM_graph")
```

simpleDynamicNetwork

 $\verb|simpleDynamicNetwork| \\$

This is a simple example of dynamic visualization using networkD3 library. This version do not implement coloring of vertices, just give a general overview of the edges.

Description

This is a simple example of dynamic visualization using networkD3 library. This version do not implement coloring of vertices, just give a general overview of the edges.

Usage

```
simpleDynamicNetwork(outputFromBallMapper, storeAsHtml = FALSE)
```

Arguments

```
outputFromBallMapper
```

an output from BallMapper function.

storeAsHtml if set true, it will store the graph in HTML file.

Value

None

Examples

```
var <- seq(from=0,to=6.3,by=0.1)
points <- as.data.frame( cbind( sin(var),cos(var) ) )
values <- as.data.frame( sin(var) )
epsilon <- 0.25
1 <- BallMapper(points,values,epsilon)
simpleDynamicNetwork(1)</pre>
```

```
storeBallMapperGraphInFile
```

This procedure store the Ball Mapper graph in a file in the following format:

Description

This procedure store the Ball Mapper graph in a file in the following format:

```
storeBallMapperGraphInFile(outputFromBallMapper, filename = "BM_graph")
```

output From Ball Mapper

output from the BallMapper procerure.

filename the name of the file to store the data.

Value

None var <- seq(from=0,to=6.3,by=0.1) points <- as.data.frame(cbind(sin(var),cos(var))) values <- as.data.frame(sin(var)) l <- BallMapper(points, values, 0.25) storeBallMapperGraphInFile(l,"my_favorite_BM_graph")

Index

```
BallMapper, 2
{\tt color\_by\_distance\_to\_reference\_points},
colorByAllVariables, 3
colorByAverageValueOfOtherVariable, 4
{\tt colorByStDevValueOfOtherVariable, 5}
coloredDynamicNetwork, 5
ColorIgraphPlot, 6
coordinates\_of\_points\_in\_subcollection,
find_dominant_difference_using_averages,
\verb|find_dominant_difference_using_averages_normalized_by_sd|,\\
{\tt GrayscaleIgraphPlot}, \textcolor{red}{10}
normalize_to_average_0_stdev_1, 11
normalize_to_min_0_max_1, 12
\verb"points_covered_by_landmarks", 13
pointToBallList, 13
readBallMapperGraphFromFile, 14
simpleDynamicNetwork, 15
storeBallMapperGraphInFile, 15
```